Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP
نویسندگان
چکیده
Dynamic responses of cardiac sodium-calcium exchange current to changes of cytoplasmic calcium and MgATP were monitored and analyzed in giant membrane patches excised from guinea pig myocytes. Secondary dependencies of exchange current on cytoplasmic calcium are accounted for in terms of two mechanisms: (a) The sodium-dependent inactivation process, termed I1 modulation, is itself strongly modulated by cytoplasmic calcium. Recovery from the I1 inactivated state is accelerated by increasing cytoplasmic calcium, and the calculated rate of entrance into I1 inactivation is slowed. (b) A second modulation process, termed I2 modulation, is not sodium dependent. As with I1 modulation, the entrance into I2 inactivation takes place over seconds in the absence of cytoplasmic calcium. The recovery from I2 inactivation is a calcium-dependent transition and is rapid (< 200 ms) in the presence of micromolar free calcium. I1 and I2 modulation can be treated as linear, independent processes to account for most exchange modulation patterns observed: (a) When cytoplasmic calcium is increased or decreased in the presence of high cytoplasmic sodium, outward exchange current turns on or off, respectively, on a time scale of multiple seconds. (b) When sodium is applied in the absence of cytoplasmic calcium, no outward current is activated. However, the full outward current is activated within solution switch time when cytoplasmic calcium is applied together with sodium. (c) The calcium dependence of peak outward current attained upon application of cytoplasmic sodium is shifted by approximately 1 log unit to lower concentrations from the calcium dependence of steady-state exchange current. (d) The time course of outward current decay upon decreasing cytoplasmic calcium becomes more rapid as calcium is reduced into the submicromolar range. (e) Under nearly all conditions, the time courses of current decay during application of cytoplasmic sodium and/or removal of cytoplasmic calcium are well fit by single exponentials. Both of the modulation processes are evidently affected by MgATP. Similar to the effects of cytoplasmic calcium, MgATP slows the entrance into I1 inactivation and accelerates the recovery from inactivation. MgATP additionally slows the decay of outward exchange current upon removal of cytoplasmic calcium by 2-10-fold, indicative of an effect on I2 inactivation. Finally, the effects of cytoplasmic calcium on sodium-calcium exchange current are reconstructed in simulations of the I1 and I2 modulation processes as independent reactions.
منابع مشابه
Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation
Sodium-calcium exchange current was isolated in inside-out patches excised from guinea pig ventricular cells using the giant patch method. The outward exchange current decayed exponentially upon activation by cytoplasmic sodium (sodium-dependent inactivation). The kinetics and mechanism of the inactivation were studied. (a) The rate of inactivation and the peak current amplitude were both stron...
متن کاملEffect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics
Nguyen M-HT, Dudycha SJ, Jafri MS. Effect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics. Am J Physiol Cell Physiol 292: C2004–C2020, 2007. First published March 7, 2007; doi:10.1152/ajpcell.00271.2006.—The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activat...
متن کاملStudy the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry
The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...
متن کاملEffect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics.
The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activate net ATP production in what is termed "parallel activation". To study this, a computational model of mitochondrial energy metabolism in the heart has been developed that integrates the Dudycha-Jafri model for the tricarboxylic acid cycle ...
متن کاملInvestigation of process factors in the synthesis of Ca7ZrAl6O18 cement by solid state method in order to eliminate undesirable secondary phases
One of the widely used cements for filling teeth and bones can be calcium zirconium aluminate cement Ca7ZrAl6O18, which of course can also be used as a refractory. The behavior and properties of this cement are more similar to tricalcium aluminate C3A cement. In this study, C7A3Z cement was synthesized by using commercial calcium carbonate, alumina and zirconia powders and after grinding for 4-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 100 شماره
صفحات -
تاریخ انتشار 1992